For the frequency distribution :
Variate $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
Frequency $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
where $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ and
$\sum \limits_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be
$2$
$1$
$4$
$6$
The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.
If the variance of $10$ natural numbers $1,1,1, \ldots ., 1, k$ is less than $10 ,$ then the maximum possible value of $k$ is ...... .
If the mean and variance of the data $65,68,58,44$, $48,45,60, \alpha, \beta, 60$ where $\alpha>\beta$ are $56$ and $66.2$ respectively, then $\alpha^2+\beta^2$ is equal to
There are 60 students in a class. The following is the frequency distribution of the marks obtained by the students in a test:
$\begin{array}{|l|l|l|l|l|l|l|} \hline \text { Marks } & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \text { Frequency } & x-2 & x & x^{2} & (x+1)^{2} & 2 x & x+1 \\ \hline \end{array}$
where $x$ is a positive integer. Determine the mean and standard deviation of the marks.
Determine mean and standard deviation of first n terms of an $A.P.$ whose first term is a and common difference is d.