- Home
- Standard 11
- Mathematics
13.Statistics
medium
For the frequency distribution :
Variate $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
Frequency $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
where $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ and
$\sum \limits_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be
A
$2$
B
$1$
C
$4$
D
$6$
(JEE MAIN-2020)
Solution
$\because \sigma^{2} \leq \frac{1}{4}( M – m )^{2}$
Where $M$ and $m$ are upper and lower bounds
of values of any random variable.
$\therefore \quad \sigma^{2}<\frac{1}{4}(10-0)^{2}$
$\Rightarrow 0<\sigma<5$
$\therefore \sigma \neq 6$
Standard 11
Mathematics